Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Wiley Interdisciplin...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Radioactive liposomes

Authors: William Thomas, Phillips; Beth Ann, Goins; Ande, Bao;

Radioactive liposomes

Abstract

AbstractMany methods of labeling liposomes with both diagnostic and therapeutic radionuclides have been developed since the initial discovery of liposomes 40 years ago. Diagnostic radiolabels can be used to track nanometer‐sized liposomes in the body in a quantitative fashion. This article reviews the basic methods of single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging and labeling of liposomes with single photon and dual photon positron emission radionuclides. Examples of the use of these diagnostic imaging agents will be shown. The ability to track the uptake of liposomes in humans and research animals on a whole body basis is providing researchers with an excellent tool for developing liposome‐based drug delivery agents. The attachment of therapeutic radionuclides to liposomes also has great promise in cancer therapy. Recent developments in the use of liposomes carrying therapeutic radionuclides for cancer therapy will also be reviewed. Many of the radiolabeling and tracking technologies developed for nanosized liposomes will also be useful for the imaging and tracking of other nanoparticles. Copyright © 2008 John Wiley & Sons, Inc.This article is categorized under:Diagnostic Tools > In Vivo Nanodiagnostics and Imaging

Keywords

Nanomedicine, Drug Compounding, Isotope Labeling, Liposomes, Nanoparticles, Radiopharmaceuticals, Image Enhancement, Tomography, Emission-Computed

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!