
arXiv: 2505.15032
ABSTRACTOrthogonal arrays are arguably one of the most fascinating and important statistical tools for efficient data collection. They have a simple, natural definition, desirable properties when used as fractional factorials, and a rich and beautiful mathematical theory. Their connections with combinatorics, finite fields, geometry, and error‐correcting codes are profound. Orthogonal arrays have been widely used in agriculture, engineering, manufacturing, and high‐technology industries for quality and productivity improvement experiments. In recent years, they have drawn rapidly growing interest from various fields such as computer experiments, integration, visualization, optimization, big data, machine learning/artificial intelligence through successful applications in those fields. We review the fundamental concepts and statistical properties and report recent developments. Discussions of recent applications and connections with various fields are presented. Some interesting open research directions are also presented.
Methodology (stat.ME), FOS: Computer and information sciences, Statistics - Methodology
Methodology (stat.ME), FOS: Computer and information sciences, Statistics - Methodology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
