
doi: 10.1002/wics.142
AbstractFractal Brownian motion, also called fractional Brownian motion (fBm), is a class of stochastic processes characterized by a single parameter called the Hurst parameter, which is a real number between zero and one. fBm becomes ordinary standard Brownian motion when the parameter has the value of one‐half. In this manner, it generalizes ordinary standard Brownian motion. Here, we precisely define fBm, compare it with Brownian motion, and describe its unique mathematical and statistical properties, including fractal behavior. Ideas of how such properties make these stochastic processes useful models of natural or man‐made systems in life are described. We show how to use these processes as unique random noise representations in state equation models of some systems. We finally present statistical state equation estimation techniques where such processes replace traditional Gaussian white noises. WIREs Comp Stat 2011 3 149–162 DOI: 10.1002/wics.142This article is categorized under: Data: Types and Structure > Time Series, Stochastic Processes, and Functional Data
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
