Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Imperial College Lon...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Wind Energy
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Wind Farm Power Maximisation via Wake Steering: A Gaussian Process‐Based Yaw‐Dependent Parameter Tuning Approach

Authors: Gori, F; Laizet, S; Wynn, A;

Wind Farm Power Maximisation via Wake Steering: A Gaussian Process‐Based Yaw‐Dependent Parameter Tuning Approach

Abstract

ABSTRACTMaximising the power production of wind farms is vital to meet the growing demand for wind energy and reduce its cost. Wake effects, resulting from the aerodynamic interactions between turbines in a wind farm, significantly impact farm efficiency, leading to substantial annual power losses. Wake steering, an influential control strategy, involves mitigating wake effects by strategically yaw misaligning upstream turbines to deflect their wakes. Conventional wake steering approaches typically rely on physics‐based analytical wake models with their parameters often calibrated using higher fidelity data. However, these approaches determine a fixed set of parameters prior to conducting wake steering, neglecting each parameter's dependency on yaw misalignment (i.e. the optimisation variables) exhibited throughout the optimisation process, potentially affecting its accuracy. To address this limitation, this paper introduces a novel data‐driven parameter tuning approach that integrates higher fidelity power measurements using Gaussian processes to continuously adapt parameters in lower fidelity wake models based on the current farm's yaw configuration. The effectiveness of the proposed approach is demonstrated on a wind farm and a layout corresponding to the Horns Rev wind farm, where various wind directions are investigated. The results reveal that the approach can enable a lower fidelity model to capture more complex physics, thereby improving its accuracy in wake steering optimisation, while maintaining robustness and computational efficiency. This method holds promise for real‐time control applications and can be extended to other control strategies and closed‐loop frameworks.

Related Organizations
Keywords

data‐driven method, wake models, wind energy, Gaussian processes, wake steering, TJ807-830, 600, parameter tuning, Renewable energy sources, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
gold
Related to Research communities