
doi: 10.1002/wcs.1525
pmid: 32043728
AbstractIt is uncontroversial to claim that cognitive science studies many complex phenomena. What is less acknowledged are the contradictions among many traditional commitments of its investigative approaches and the nature of cognitive systems. Consider, for example, methodological tensions that arise due to the fact that like most natural systems, cognitive systems are nonlinear; and yet, traditionally cognitive science has relied on linear statistical data analyses. Cognitive science as complexity science is offered as an interdisciplinary framework for the investigation of cognition that can dissolve such contradictions and tensions. Here, cognition is treated as exhibiting the following four key features: emergence, nonlinearity, self‐organization, and universality. This framework integrates concepts, methods, and theories from such disciplines as systems theory, nonlinear dynamical systems theory, and synergetics. By adopting this approach, the cognitive sciences benefit from a common set of practices to investigate, explain, and understand cognition in its varied and complex forms.This article is categorized under:Computer Science > Neural NetworksPsychology > Theory and MethodsPhilosophy > Foundations of Cognitive ScienceNeuroscience > Cognition
Systems Analysis, Interdisciplinary Research, Neurosciences, Cognitive Science, Humans, Nerve Net
Systems Analysis, Interdisciplinary Research, Neurosciences, Cognitive Science, Humans, Nerve Net
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
