Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wiley Interdisciplin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Wiley Interdisciplinary Reviews Cognitive Science
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Attention maps in the brain

Authors: David C, Somers; Summer L, Sheremata;

Attention maps in the brain

Abstract

AbstractOver 20 distinct cerebral cortical areas contain spatial map representations of the visual field. These retinotopic, or visuotopic, cortical areas occur not only in the occipital lobe but also in the parietal, temporal, and frontal lobes. The cognitive influences of visuospatial attention operate via these cortical maps and can support selection of multiple objects at the same time. In early visual cortical areas, spatial attention enhances responses of selected items and diminishes the responses to distracting items. In higher order cortex, the maps support a spatial indexing role, keeping track of the items to be attended. These maps also support visual short‐term memory (VSTM) representations. In each hemisphere, all the known maps respond selectively to stimuli presented within the contralateral visual field. However, a hemispheric asymmetry emerges when the attentional or VSTM demands of a task become significant. In the parietal lobe, the right hemisphere visuotopic maps switch from coding only contralateral visual targets to coding memory and attention targets across the entire visual field. This emergent asymmetry has important implications for understanding hemispatial neglect syndrome, and supports a dynamic network form of the representational model of neglect. WIREs Cogn Sci 2013, 4:327–340. doi: 10.1002/wcs.1230This article is categorized under: Psychology > Attention Neuroscience > Cognition

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
bronze