Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Vadose Zone Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vadose Zone Journal
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vadose Zone Journal
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Vadose Zone Journal
Article . 2021
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of climate change on depression‐focused groundwater recharge in the Canadian Prairies

Authors: Amro Negm; Polina Abdrakhimova; Masaki Hayashi; Kabir Rasouli;

Effects of climate change on depression‐focused groundwater recharge in the Canadian Prairies

Abstract

Abstract Small topographic depressions are ubiquitous in the glaciated terrain of the Northern Prairies characterized by a cold semiarid climate. Groundwater recharge in this region is focused in topographic depressions, which receive lateral inputs of snowmelt runoff in addition to vertical inputs of precipitation. The response of depression‐focused recharge to climate change is largely unknown due to the difficulty of representing the complex interaction between depressions and surrounding uplands in hydrological models. This study evaluates climate change effects on recharge using a process‐based hydrological model and the pseudo‐global warming (PGW) approach representing a climate of 2092–2100, which has a higher mean annual temperature (+4.9 °C) and precipitation (+135 mm or +27%) compared with the present climate. The recharge model is conditioned using field data from an instrumented grassland site in the Canadian Prairies. Under the present climate, snowmelt runoff occurred in March–April over frozen soil, which accounted for the majority of water transfer from the upland to the depression. Under the PGW scenario, the amount of snowmelt runoff in March–April decreased due to lower snow accumulation and shorter periods of frozen soil. Instead, runoff occurred in midwinter and also in summer months due to increased intensity and duration of summer storms. Despite the increased precipitation, mean annual recharge rates decreased from 10.2 to 3.2 mm yr –1 , indicating the importance of considering the complex effects of warmer and wetter climate on hydrological processes in cold semiarid regions.

Keywords

Environmental sciences, QE1-996.5, GE1-350, Geology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold