Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Synapsearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Synapse
Article . 2006 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Synapse
Article . 2006
versions View all 2 versions
addClaim

Self-modeling structure of evoked postsynaptic potentials

Authors: Kert, Viele; Mark, Lancaster; Robin L, Cooper;

Self-modeling structure of evoked postsynaptic potentials

Abstract

With the simplicity of the synaptic structure and physiology at neuromuscular junctions (NMJs) of crayfish and the given transmitter being released in quantal packets, a detailed assessment in the fundamental processes of chemical synaptic transmission is possible. Since the quantal event is the basic element of transmission, we consider an approach to further understand the characteristics of quantal responses. In this study, we introduce a method for combining information across excitatory postsynaptic potentials (EPSPs) that are quantal in nature. The method is called self-modeling regression, known in the statistics literature as SEMOR. This method illustrates that the differing timing and heights of EPSPs can be described with four coefficients measuring affine (shift and scale) transformations of the x and y axes. We demonstrate that this relationship allows us to provide a unified schema for the many functionals currently used in the literature, such as peak amplitude, tau, latency, area under the curve, or decay time. Computer code in R is available on the internet to perform the analysis.

Related Organizations
Keywords

Models, Neurological, Neuromuscular Junction, Animals, Excitatory Postsynaptic Potentials, Quantum Theory, Regression Analysis, Computer Simulation, Astacoidea, Synaptic Transmission

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!