Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Software Testing Ver...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Software Testing Verification and Reliability
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fault‐driven stress testing of distributed real‐time software based on UML models

Authors: Vahid Garousi;

Fault‐driven stress testing of distributed real‐time software based on UML models

Abstract

AbstractIn a previous article, a stress testing methodology was reported to detect network traffic‐related Real‐Time (RT) faults in distributed RT systems based on the design UML model of a System Under Test (SUT). The stress methodology, referred to as Test LOcation‐driven Stress Testing (TLOST), aimed at increasing the chances of RT failures (violations in RT constraints) associated with a given stress test location (an network or a node under test). As demonstrated and experimented in this article, although TLOST is useful in stress testing different test locations (nodes and network, it does not guarantee to target (test) all RT constraints in an SUT. This is because the durations of message sequences bounded by some RT constraints might never be exercised (covered) by TLOST. A complementary stress test methodology is proposed in this article, which guarantees to target (cover) all RT constraints in an SUT and detect their potential RT faults (if any). Using a case study, this article shows that the new complementary methodology is capable of targeting the RT faults not detected by the previous test methodology. Copyright © 2009 John Wiley & Sons, Ltd.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!