Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Smallarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Small
Article . 2025 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Small
Article . 2025
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of Magneto‐Mechanical Actuation on Cell Differentiation: A Study Using Wireless, 3D‐Printed Device and a Porous Ferrogel

Authors: Soumyadeep Basak; Gopinath Packirisamy;

Impact of Magneto‐Mechanical Actuation on Cell Differentiation: A Study Using Wireless, 3D‐Printed Device and a Porous Ferrogel

Abstract

AbstractCells perceive external and internally generated forces of different kinds, significantly impacting their cellular biology. In the relatively nascent field of mechanobiology, the impact of such forces is studied and further utilized to broaden the knowledge of cellular developmental pathways, disease progression, tissue engineering, and developing novel regenerative strategies. However, extensive considerations of mechanotransduction pathways for biomedical applications are still broadly limited due to a lack of affordable technologies in terms of devices and simple magnetic actuatable materials. Herein, synthesizing a monophasic, macroporous, in situ‐fabricated gelatin‐based ferrogel is reported using polyethylene glycol (PEG) coated‐iron oxide (magnetite) particles with high magnetization. Developing a 3D printed, compact, and wireless device capable of providing a wide range of magneto‐mechanical actuation using magnetic field susceptible materials in a noncontact manner is reported. Using the device and ferrogel, C2C12 myoblast differentiation is studied under magnetic field actuation, and significant differences in the myogenin, a differentiation marker, expression behavior are observed. Due to careful design considerations, robust component selection, and easy availability of low‐cost precursor for magnetic responsive material fabrication, the device‐ferrogel combination can be easily adapted to routine biological studies, thereby helping mechanobiology to be utilized for developing exciting new biomedical strategies.

Keywords

Myoblasts, Mice, Tissue Engineering, Printing, Three-Dimensional, Animals, Cell Differentiation, Porosity, Wireless Technology, Cell Line, Polyethylene Glycols

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!