Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Statistics in Medici...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Statistics in Medicine
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Use of pooled samples from the national health and nutrition examination survey

Authors: Samuel P, Caudill;

Use of pooled samples from the national health and nutrition examination survey

Abstract

The National Centers for Disease Control and Prevention (CDC) provides an ongoing assessment of the US population's exposure to environmental chemicals by using biomonitoring in conjunction with CDC's National Health and Nutrition Examination Survey (NHANES). Characterizing the distributions of concentrations of environmental compounds or their metabolites in the US population is a primary objective of CDC's biomonitoring program. Historically, this characterization has been based on individual measurements of these compounds in body fluid or tissue from representative samples of the population. Pooling samples before making analytical measurements can reduce the costs of biomonitoring by reducing the number of analyses. For the first time in NHANES 2005–2006, a weighted pooled‐sample design was implemented to facilitate pooling samples before making analytical measurements. This paper describes this design and the estimation method being developed in the National Center for Environmental Health, Division of Laboratory Sciences (NCEH/DLS) to characterize concentrations of polychlorinated and polybrominated compounds. We present percentile estimates for 2,2  ′ ,4,4  ′ ,5,5  ′ ‐hexachlorobiphenyl (PCB153) in specific subpopulations of the US based on the NHANES 2005–2006 pooled‐sample design. We also compare estimates based on individual samples from NHANES 2003–2004 with estimates based on artificially created pools from NHANES 2003–2004 using a pooled‐sample design similar to the one used for NHANES 2005–2006. For NHANES 2005–2006 the number of analyses required to characterize the levels of 61 polychlorinated and 13 polybrominated compounds in the US population was reduced from 2201 to 228. At a cost of $1400 per analytical measurement, this represents a savings of approximately $2.78 million. Published 2012. This article is a US Government work and is in the public domain in the USA.

Keywords

Adult, Male, Adolescent, Middle Aged, Nutrition Surveys, Polychlorinated Biphenyls, United States, Young Adult, Data Interpretation, Statistical, Humans, Mass Screening, Female, Child

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
bronze