
doi: 10.1002/sia.7340
In contrast to traditional X‐ray photoelectron spectroscopy (XPS), hard X‐ray photoelectron spectroscopy (HAXPES) can provide information from deeper within a sample while maintaining chemical resolution. However, working with higher energy X‐rays introduces a series of new or different issues ranging from energy calibration to factors associated with quantitative analysis. As part of the efforts to identify and increase community awareness about these issues, a workshop was held to review HAXPES metrology challenges with the perspective of converting it into a quantitative technique. A summary is hereby given of this workshop, which was entitled “What New Challenges Come with the Capabilities of HAXPES?” It was held in Portland, OR, USA, on November 7, 2023, and was primarily sponsored by the ASTM E42 Committee and the Applied Surface Science Division of the American Vacuum Society. This report contains summaries of the presentations and discussions at this workshop regarding the current open problems in HAXPES metrology. There were 20 participants at the workshop.
depth profiling, peak positions, [SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic, [SPI] Engineering Sciences [physics], [SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, inelastic background, uniformity, quantification, background subtraction
depth profiling, peak positions, [SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic, [SPI] Engineering Sciences [physics], [SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, inelastic background, uniformity, quantification, background subtraction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
