
doi: 10.1002/sec.864
ABSTRACTThis paper presents a learning‐based steganalysis/detection method to attack spatial domain least significant bit (LSB) matching steganography in grayscale images, which is the antetype of many sophisticated steganographic methods. We model the message embedded by LSB matching as the independent noise to the image, and theoretically prove that LSB matching smoothes the histogram of multi‐order differences. Because of the dependency among neighboring pixels, histogram of low order differences can be approximated by Laplace distribution. The smoothness caused by LSB matching is especially apparent at the peak of the histogram. Consequently, the low order differences of image pixels are calculated. The co‐occurrence matrix is utilized to model the differences with the small absolute value in order to extract features. Finally, support vector machine classifiers are trained with the features so as to identify a test image either an original or a stego image. The proposed method is evaluated by LSB matching and its improved version “Hugo”. In addition, the proposed method is compared with state‐of‐the‐art steganalytic methods. The experimental results demonstrate the reliability of the new detector. Copyright © 2013 John Wiley & Sons, Ltd.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 256 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
