
doi: 10.1002/rsa.20635
We show that any k-uniform hypergraph with n edges contains two isomorphic edge disjoint subgraphs of size for k = 4, 5 and 6. This is best possible up to a logarithmic factor due to an upper bound construction of Erdős, Pach, and Pyber who show there exist k-uniform hypergraphs with n edges and with no two edge disjoint isomorphic subgraphs with size larger than . Furthermore, our result extends results Erdős, Pach and Pyber who also established the lower bound for k = 2 (eg. for graphs), and of Gould and Rodl who established the result for k = 3. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 2016
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
