Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Random Structures an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Random Structures and Algorithms
Article . 2013 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2014
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2011
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
https://dx.doi.org/10.1184/r1/...
Other literature type . 2012
Data sources: Datacite
https://dx.doi.org/10.1184/r1/...
Other literature type . 2012
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rainbow hamilton cycles in random graphs

Rainbow Hamilton cycles in random graphs
Authors: Alan M. Frieze; Po-Shen Loh;

Rainbow hamilton cycles in random graphs

Abstract

AbstractOne of the most famous results in the theory of random graphs establishes that the threshold for Hamiltonicity in the Erdős‐Rényi random graph Gn,p is around . Much research has been done to extend this to increasingly challenging random structures. In particular, a recent result by Frieze determined the asymptotic threshold for a loose Hamilton cycle in the random 3‐uniform hypergraph by connecting 3‐uniform hypergraphs to edge‐colored graphs.In this work, we consider that setting of edge‐colored graphs, and prove a result which achieves the best possible first order constant. Specifically, when the edges of Gn,p are randomly colored from a set of (1 + o(1))n colors, with , we show that one can almost always find a Hamilton cycle which has the additional property that all edges are distinctly colored (rainbow).Copyright © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 44, 328‐354, 2014

Related Organizations
Keywords

Eulerian and Hamiltonian graphs, Random graphs (graph-theoretic aspects), Hypergraphs, Coloring of graphs and hypergraphs, FOS: Mathematics, Mathematics - Combinatorics, 19999 Mathematical Sciences not elsewhere classified, Combinatorics (math.CO), Hamilton cycles, random graphs, coloring, 05C80, 05C38, 05C45

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Average
Green
bronze