Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
River Research and Applications
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Headwater reservoirs weaken terrestrial‐aquatic linkage by slowing leaf‐litter processing in downstream regulated reaches

Authors: Mendoza-Lera, C.; Larrañaga, Aitor; Pérez, Javier; Descals, Enric; Martínez, Antonio; Moya, Oscar; Arostegui, I.; +1 Authors

Headwater reservoirs weaken terrestrial‐aquatic linkage by slowing leaf‐litter processing in downstream regulated reaches

Abstract

AbstractLeaf litter breakdown is a key process, providing matter and energy to communities inhabiting many headwater streams that flow through forests. This detrital pathway is affected by many human landscape transformations; but it is little known about the impact of small headwater reservoirs on leaf litter decay in streams. Alder leaf litter breakdown rates and associated fauna were studied upstream and downstream of five small water supply reservoirs (surface‐release in rainy autumn‐winters), in the Nerbioi‐Ibaizabal drainage basin (Basque Country, Spain), to assess the effect of impoundment on headwater streams function. Breakdown rates were significantly lower below the dams, mainly associated with a reduction of the density and the biomass of shredders. Among the shredders, Nemouridae and especially Protonemura were less abundant downstream of the dam. Alterations in the physicochemical characteristics of the water due to the reservoirs were negligible throughout our study, and temperature showed only slight variations that could not explain the reduction of the rates. The effect on shredders is likely to be related to differences in the riparian environment and flow regulation by the dams. Copyright © 2010 John Wiley & Sons, Ltd.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 42
    download downloads 25
  • 42
    views
    25
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
49
Top 10%
Top 10%
Top 10%
42
25
Green