Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Reviews in Medical V...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Reviews in Medical Virology
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2

Authors: Yasushi, Kawaguchi; Kentaro, Kato;

Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2

Abstract

AbstractHerpesviruses encode protein kinases. A subset of these proteins, represented by HSV‐1 UL13, are conserved throughout all members of the Herpesviridae, and here, are designated CHPKs (conserved herpesvirus protein kinases). In addition to conserved gene products like CHPKs, herpesviruses encode genes specific to respective herpesviruses. When acting upon conserved viral gene products or cellular factors, CHPKs may play conserved roles in the life cycles of herpesviruses. CHPKs may also express unique functions within the infectious process of individual herpesviruses when specific viral gene products are targeted. CHPKs demonstrate specific activity in multiple herpesvirus infections, functioning in the regulation of viral gene expression in HSV‐1, tissue tropism in VZV, and viral DNA synthesis, encapsidation and egress from the nucleus in HCMV. The HCMV CHPK, however, can partially substitute for the HSV‐1 CHPK. Representative CHPKs from all Herpesviridae subfamilies can also facilitate the hyperphosphorylation of the cellular translation factor, EF‐1δ. This indicates that CHPKs have conserved functions. Recent data have shown that both CHPKs and a cellular protein kinase, cdc2, phosphorylate the same amino acid residues of target proteins. Thus, CHPKs may mimic cdc2 function in infected cells. Copyright © 2003 John Wiley & Sons, Ltd.

Keywords

Viral Proteins, CDC2 Protein Kinase, Animals, Humans, Phosphorylation, Protein Kinases, Herpesviridae

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!