Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Rapid Communications...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Rapid Communications in Mass Spectrometry
Article . 2017 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ion suppression effect in desorption electrospray ionization and electrospray ionization mass spectrometry

Authors: Zheng Wang; Haijing Zhu; Guangming Huang;

Ion suppression effect in desorption electrospray ionization and electrospray ionization mass spectrometry

Abstract

RationaleAlthough it is claimed that desorption electrospray ionization (DESI) causes less ion suppression effects than electrospray ionization (ESI), a related investigation with quantification measurement of ion suppression effects is absent. Herein, a comparative analysis of ion suppression effects between DESI and ESI was conducted, with the aiming of quantitatively studying the ion suppression effect.MethodsCTVA mixtures, a constant concentration of tioconazole with varied concentrations of atenolol, were analyzed by ESI and DESI. The ion suppression effect was characterized by the signal loss of tioconazole in the mixture compared to the signal intensity of tioconazole without interference (denoted as (Isingle − Imixture)/Isingle). According to the variations in the experimental conditions (such as flow rate, solvent composition, substrate material, capillary inner diameter, sheath gas velocity), ion suppression effects in DESI and ESI were compared.ResultsWith the increasing flow rate, the ion suppression effect in DESI became weaker, while the opposite trend was obtained for ESI. As for capillary inner diameter, a smaller inner diameter resulted in weaker ion suppression effects in DESI and ESI. The solvent composition affected the ion suppression effect, and the PTFE substrate presented the weakest ion suppression effect among the five substrate materials.ConclusionsThough the ion suppression effect in DESI and ESI was shown to relate to experimental conditions, DESI had less effect than ESI under the same experimental conditions in most cases. Moreover, DESI displayed stronger matrix‐tolerant ability than ESI which is also attributed to the weaker ion suppression effect.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!