Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ physica status solid...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
physica status solidi (RRL) - Rapid Research Letters
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
physica status solidi (RRL) - Rapid Research Letters
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Mechanical–Electrical Model to Describe the Negative Differential Resistance in Membranotronic Devices

Authors: Max Huber; Jörg Schuster; Oliver G. Schmidt; Harald Kuhn; Daniil Karnaushenko;

A Mechanical–Electrical Model to Describe the Negative Differential Resistance in Membranotronic Devices

Abstract

Membranotronic devices are artificial neural membranes mimicing the functionality of biological neural networks. These devices rely on the emergence of negative differential resistance (NDR). A minimalistic physical model for membranotronic devices capable of generating NDR is presented. The model features a deformable membrane with holes that facilitate ion currents. The deformation of the membrane, induced by electrostatic pressure from an applied voltage, modulates these currents. The model comprises a well‐established mechanical framework for describing deformable membranes with holes, alongside a model for ionic current that considers temperature‐dependent ion mobilities. It is demonstrated that the model can faithfully reproduce NDR across a wide and physically realistic range of parameter combinations. Furthermore, the simulations reveal that the temperature of the electrolyte can exceed its boiling point, resulting in bubble formation. To mitigate this issue, materials with high heat transfer coefficients and low conductivity are recommended. In essence, the work bridges the gap between artificial membranotronic devices and biological neural networks by providing a robust physical model capable of emulating NDR, a key feature in the operation of such systems. This advancement in membranotronics holds great promise for the development of bioinspired soft artificial neuromimetic systems that closely mimic their biological counterparts.

Country
Germany
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid