Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Flore (Florence Rese...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Peptide Science
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

Side chain‐to‐side chain cyclization by click reaction

Authors: A. Le Chevalier Isaad; PAPINI, ANNA MARIA; M. Chorev; ROVERO, PAOLO;

Side chain‐to‐side chain cyclization by click reaction

Abstract

AbstractCuI‐catalyzed azide‐alkyne 1,3‐dipolar Huisgen's cycloaddition (CuAAC) is a click reaction that has drawn a lot of attention, in general, and in the field of peptide and protein sciences, in particular. Among several reported applications, the preparation of novel heterodetic cyclopeptides by an intramolecular side chain‐to‐side chain CuAAC, forming a 1,4‐disubstituted[1,2,3]triazolyl‐containing bridge, is of great interest. Herein, we provide a detailed protocol for the syntheses of model heterodetic cyclopeptides as a prototypical intramolecular CuAAC, using as a model a sequence derived from parathyroid hormone‐related protein. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.

Country
Italy
Keywords

click reaction; Huisgen’s cycloaddition; cyclopeptide; parathyroid hormone-related protein, Models, Molecular, Azides, Molecular Structure, Cyclization, Alkynes, Peptides, Cyclic, Catalysis, Copper

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!