Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pest Management Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pest Management Science
Article . 2025 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Suppressiveness of spent mushroom substrate amendment against eggplant Verticillium wilt

Authors: Yuanhang Qu; Xiaomeng Liu; Zhenhe Su; Qinggang Guo; Ping Ma;

Suppressiveness of spent mushroom substrate amendment against eggplant Verticillium wilt

Abstract

AbstractBACKGROUNDVerticillium wilt, caused by Verticillium dahliae, is a devastating soil‐borne disease. Spent mushroom substrate (SMS) has shown potential as a soil amendment for controlling soil‐borne diseases. However, the mechanisms underlying its disease‐suppressive effects remain poorly understood. Here, the efficacy of SMS in suppressing eggplant Verticillium wilt and mechanisms related to rhizosphere microbiome regulation were investigated.RESULTSWe tested different SMS sources (Pleurotus ostreatus, Hypsizygus marmoreus, Lentinus edodes), particle sizes (45, 75, 150, 300 μm), and addition ratios (0.5–8%, w/w). The fungus control efficacy ranged from 26 to 66%, with best results from 2% SMS of L. edodes at 150 μm. This treatment resulted in 5.7‐fold reduction in the Verticillium dahliae population in eggplant rhizosphere. Eggplant fresh and dry weights of shoots and roots, and plant height, significantly increased with 2% SMS amendment. 16S rDNA sequencing revealed alterations in rhizosphere bacterial communities, with an increase in indigenous beneficial bacteria, particularly Bacillus spp., following SMS amendment. Spent mushroom substrate co‐inoculated with exogenous biocontrol strain Bacillus subtilis NCD‐2 achieved a synergistic effect against Verticillium wilt than both SMS or NCD‐2 alone.CONCLUSIONSResults revealed that SMS protects eggplants against Verticillium wilt, largely by recruiting Bacillus spp. to the rhizosphere. The enrichment effect of indigenous Bacillus spp. in the rhizosphere mediated by SMS similarly applies to Bacillus inoculum, enhancing its efficacy in controlling eggplant Verticillium wilt. These findings enhance our understanding of the protective effects of SMS and its role in the biocontrol of Verticillium wilt. © 2025 Society of Chemical Industry.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!