
AbstractThe contact topology of a protein determines important aspects of the folding process. The topological measure of contact order has been shown to be predictive of the rate of folding. Circuit topology is emerging as another fundamental descriptor of biomolecular structure, with predicted effects on the folding rate. We analyze the residue‐based circuit topological environments of 21 K mutations labeled as pathogenic or benign. Multiple statistical lines of reasoning support the conclusion that the number of contacts in two specific circuit topological arrangements, namely inverse parallel and cross relations, with contacts involving the mutated residue have discriminatory value in determining the pathogenicity of human variants. We investigate how results vary with residue type and according to whether the gene is essential. We further explore the relationship to a number of structural features and find that circuit topology provides nonredundant information on protein structures and pathogenicity of mutations. Results may have implications for the polymer physics of protein folding and suggest that “local” topological information, including residue‐based circuit topology and residue contact order, could be useful in improving state‐of‐the‐art machine learning algorithms for pathogenicity prediction.
Protein Folding, Virulence, Science, Mutation, Missense, Proteins, machine learning, Biological Chemistry, Humans, protein topology, mutation, Research Articles, Algorithms
Protein Folding, Virulence, Science, Mutation, Missense, Proteins, machine learning, Biological Chemistry, Humans, protein topology, mutation, Research Articles, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
