Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proteins Structure F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proteins Structure Function and Bioinformatics
Article . 2001 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Distribution of indel lengths

Authors: Qian, Bin; Goldstein, Richard A.;

Distribution of indel lengths

Abstract

AbstractProtein sequence alignment has become a widely used method in the study of newly sequenced proteins. Most sequence alignment methods use an affine gap penalty to assign scores to insertions and deletions. Although affine gap penalties represent the relative ease of extending a gap compared with initializing a gap, it is still an obvious oversimplification of the real processes that occur during sequence evolution. To improve the efficiency of sequence alignment methods and to obtain a better understanding of the process of sequence evolution, we wanted to find a more accurate model of insertions and deletions in homologous proteins. In this work, we extract the probability of a gap occurrence and the resulting gap length distribution in distantly related proteins (sequence identity < 25%) using alignments based on their common structures. We observe a distribution of gaps that can be fitted with a multiexponential with four distinct components. The results suggest new approaches to modeling insertions and deletions in sequence alignments. Proteins 2001;45:102–104. © 2001 Wiley‐Liss, Inc.

Country
United States
Keywords

Databases, Factual, Sequence Homology, Amino Acid, Entropy, Molecular, Computational Biology, Proteins, Reproducibility of Results, Evolution, Molecular, Chemistry, Amino Acid Substitution, Health Sciences, Biochemistry and Biotechnology, Amino Acid Sequence, Cellular and Developmental Biology, Sequence Alignment, Software, Probability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%
bronze