Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Protein Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein Science
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Protein Science
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Protein Science
Article . 2014
versions View all 2 versions
addClaim

Halogen bonding (X‐bonding): A biological perspective

Authors: Matthew R, Scholfield; Crystal M Vander, Zanden; Megan, Carter; P Shing, Ho;

Halogen bonding (X‐bonding): A biological perspective

Abstract

AbstractThe concept of the halogen bond (or X‐bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ‐hole, serves as a Lewis acid to attract a variety of electron‐rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H‐bond) interaction. We present here a broad overview of X‐bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X‐bonds are found in biomolecular structures, and how their structure–energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X‐bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological‐based materials.

Related Organizations
Keywords

Models, Molecular, Biological Factors, Binding Sites, Halogens

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    412
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
412
Top 1%
Top 1%
Top 1%
bronze