Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cranfield University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cranfield CERES
Article . 2023
License: CC BY NC
Data sources: Cranfield CERES
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Propellants Explosives Pyrotechnics
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Detonation performance of urea‐hydrogen peroxide (UHP)**

Authors: Francis Halleux; Jean‐François Pons; Ian Wilson; Bart Simoens; Romuald Van Riet; Michel Lefebvre;

Detonation performance of urea‐hydrogen peroxide (UHP)**

Abstract

AbstractCarbamide Peroxide, an adduct of Urea and Hydrogen Peroxide, is commonly used in the cosmetic and pharmaceutical industries as a solid source of hydrogen peroxide. However, it exhibits explosive properties and can be easily manufactured from readily available household chemicals, making it a potential emerging threat. We carried out a detailed performance assessment, combining experiments, thermochemical calculations and numerical simulations and highlighted a good level of agreement between experimental data from lab, field and underwater firings. A maximum detonation velocity of 3.65 km/s was recorded for unconfined 25 kg UHP charges at 0.85 g/cm3(200 mm charge diameter). We determined in these conditions an infinite diameter detonation velocity of 3.94 km/s. These results are also consistent with previous results obtained at small scale under heavy confinement. Airblast measurements highlighted an average 40 % TNT equivalence for impulse and 55 % for peak overpressure at short distance, which are in good agreement with the 57 % (Power Index) calculated from Explo5, while 50 % for bubble energy (explosive power) and 20 % for shock pressure (brisance) were obtained from underwater experiments. The use of different experimental approaches has proven useful to characterise the performances parameters of a non‐ideal explosive for risk assessment purposes.

Country
United Kingdom
Related Organizations
Keywords

Urea hydrogen peroxide, Performance, Detonation, 621, Non ideal explosive

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green