Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTEOMICS - CLINICA...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS - CLINICAL APPLICATIONS
Article . 2023 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Association analysis of hepatocellular carcinoma‐related hub proteins and hub genes

Authors: Xinhong Zhang; Boyan Zhang; Yawei Zhang; Fan Zhang;

Association analysis of hepatocellular carcinoma‐related hub proteins and hub genes

Abstract

AbstractPurposeHepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The occurrence and development of HCC are closely related to epigenetic modifications. Epigenetic modifications can regulate gene expression and related functions through DNA methylation. This paper presents an association analysis method of HCC‐related hub proteins and hub genes.Experimental designBioinformatics analysis of HCC‐related DNA methylation data is carried out to clarify the molecular mechanism of HCC‐related genes and to find hub genes (genes with more connections in the network) by constructing in the gene interaction network. This paper proposes an accurate prediction method of protein–protein interaction (PPI) based on deep learning model DeepSG2PPI. The trained DeepSG2PPI model predicts the interaction relationship between the synthetic proteins regulated by HCC‐related genes.ResultsThis paper finds that four genes are the intersection of hub genes and hub proteins. The four genes are: FBL, CCNB2, ALDH18A1, and RPLP0. The association of RPLP0 gene with HCC is a new finding of this study. RPLP0 is expected to become a new biomarker for the treatment, diagnosis, and prognosis of HCC. The four proteins corresponding to the four genes are: ENSP00000221801, ENSP00000288207, ENSP00000360268, and ENSP00000449328.Conclusions and clinical relevanceThe association between the hub genes with the hub proteins is analyzed. The mutual verification of the hub genes and the hub proteins can obtain more credible HCC‐related genes and proteins, which is helpful for the diagnosis, treatment, and drug development of HCC.

Related Organizations
Keywords

Gene Expression Regulation, Neoplastic, Carcinoma, Hepatocellular, Gene Expression Profiling, Liver Neoplasms, Humans, Proteins, Computational Biology, Gene Regulatory Networks, Prognosis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!