
Protein–protein interaction networks are typically generated in standard cell lines or model organisms as it is prohibitively difficult to record large interaction datasets from specific tissues or disease models at a reasonable pace. Although the interaction data are of high confidence, they thus do not reflect in vivo relationships as such. A wealth of physiologically relevant protein information, obtained under different conditions and from different systems, is available including information on genetic variation, protein levels, and PTMs. However, these data are difficult to assess comprehensively because the relationships between the entities remain elusive from the measurements. Here, we exemplarily highlight recent studies that gained deeper insight from genetic variation, protein, and PTM measurements using interaction information pointing toward the importance and potential of interaction networks for the interpretation of sequencing and proteomics data.
Proteomics, Protein Interaction Mapping, Humans, Databases, Protein, Protein Binding
Proteomics, Protein Interaction Mapping, Humans, Databases, Protein, Protein Binding
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
