Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Polymer S...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Polymer Science Polymer Physics Edition
Article . 1975 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tensile properties of ultradrawn polyethylene

Authors: Numa J. Capiati; Roger S. Porter;

Tensile properties of ultradrawn polyethylene

Abstract

AbstractHigh‐density polyethylene filaments prepared by a solid‐state deformation in an Instron capillary rheometer show unusually high crystal orientation, chain extension, axial modulus, and ultimate tensile strength. The Young's modulus and ultimate tensile strength have been determined from stress–strain curves. Gripping of this high modulus polyethylene has been a problem heretofore, but the measurement of ultimate tensile strength has now been made feasible by a special gripping procedure. Tensile moduli show an increase with sample preparation temperature and pressure. Values as high as 6.7 × 1011 dyne/cm2 are obtained from samples extruded at 134°C and 2400 atm and tested at a strain rate of 3.3 × 10−4 sec−1. The effect of strain rate and frequency on modulus has also been evaluated by a combination of stress–strain data and dynamic tension plus sonic measurements over nine decades of time.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?