Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTEOMICSarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS
Article . 2006 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
PROTEOMICS
Article . 2007
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Membrane microdomains and proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts

Authors: Eric Rubinstein; Eric Rubinstein; François Le Naour; François Le Naour; Magali André; Magali André; Claude Boucheix; +1 Authors

Membrane microdomains and proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts

Abstract

Biological membranes are compartmentalized into microdomains that exhibit particular lipid and protein compositions. Membrane microdomains, such as tetraspanin-enriched microdomains and lipid rafts, have been suggested to play a role in a variety of physiological and pathological processes. Therefore, the characterization of the protein compositions of these microdomains, which is the focus of this review, appears to be a crucial step to better understanding their function. Proteomics has recently allowed the characterization of tetraspanin-enriched microdomains in colon cancer cells. This demonstrated the presence of different categories of membrane proteins and suggested a variation in the composition of tetraspanin-enriched microdomains during tumor progression. On the other hand, proteomics has permitted the identification of hundreds of proteins in lipid rafts of different origins. However, the diversity of methodologies in sample preparation and of strategies in protein identification led to a broad variability in the data obtained. These methodological issues are discussed. Moreover, proteomics has revealed that different sets of proteins were present in tetraspanin-enriched microdomains as compared with lipid rafts, strengthening the idea that these microdomains are distinct structures.

Keywords

Proteomics, Membrane Glycoproteins, Membrane Proteins, Caveolae, Tetraspanin 29, Neoplasm Proteins, Protein Structure, Tertiary, Membrane Microdomains, Antigens, CD, Cell Line, Tumor, Multiprotein Complexes, Colonic Neoplasms, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author? Do you have the OA version of this publication?