Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Polymer Engineering ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Polymer Engineering & Science
Article . 2023 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
versions View all 1 versions
addClaim

A numerical study on warm deep drawing of polypropylene

Authors: Chandra Kishore Reddy Emani; Pankaj K. Mallick;

A numerical study on warm deep drawing of polypropylene

Abstract

Abstract Warm deep drawing of polypropylene, a semi‐crystalline thermoplastic polymer, is studied using finite element analysis. In this process, a circular polypropylene blank is preheated to a temperature much below its melting temperature and deep drawn into the shape of a flat‐bottom cylindrical cup using a punch‐die combination, both initially at 25°C. The material model used for the analysis considers the effects of varying temperature and strain rate during the deep drawing process on the depth of draw. The effects of blank holder force, initial blank temperature, blank diameter, and die and punch corner radii on the depth of draw are determined. Thickness, temperature, and strain variations in the drawn cups, punch forces, and failure modes are also determined.

Country
United States
Related Organizations
Keywords

Engineering, deep drawing, Materials Science and Engineering, modeling, thickness distribution, failure modes, polypropylene

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid