Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pharmacoepidemiology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pharmacoepidemiology and Drug Safety
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bias in case‐crossover studies of medications due to persistent use: A simulation study

A simulation study
Authors: Katsiaryna Bykov; Shirley V. Wang; Jesper Hallas; Anton Pottegård; Malcolm Maclure; Joshua J. Gagne;

Bias in case‐crossover studies of medications due to persistent use: A simulation study

Abstract

AbstractPurposeThe case‐crossover design is increasingly used to evaluate the effects of chronic medications; however, as traditionally implemented in pharmacoepidemiology, with referent period preceding the outcome, it may lead to bias in the presence of persistent exposures. We aimed to evaluate the extent and magnitude of bias in case‐crossover analyses of chronic and persistent exposures, using simulations.MethodsWe simulated cohorts with either 30‐day, 180‐day, or 2‐year exposure duration; and with varying degrees of persistence (10%, 30%, 50%, 70%, or 90% of patients not stopping exposure). We evaluated all scenarios under the null and the scenario with 30% persistence under varying exposure effects (odds ratios of 0.25 to 4.0). Cohorts were analyzed using conditional logistic regression that compared the odds of exposure on the outcome day to the odds of exposure on a referent day 30 days prior to the outcome. We further implemented the case‐time‐control design to evaluate its ability to adjust for bias from persistence.ResultsCase‐crossover analyses produced unbiased estimates across all scenarios without persistent users, regardless of exposure duration. In scenarios where some patients persisted on treatment, case‐crossover analyses resulted in upward bias, which increased with increasing proportion of persistent users, but did not vary substantially in relation to the magnitude of the true effect. Case‐time‐control analyses removed bias in all scenarios.ConclusionsInvestigators should be aware of bias due to treatment persistence in unidirectional case‐crossover analyses of chronic medications, which can be remedied with a control group of similarly persistent noncases.

Keywords

bias, drug safety, pharmacoepidemiology, Cross-Over Studies, Time Factors, case-crossover, Drug-Related Side Effects and Adverse Reactions, Pharmacoepidemiology, epidemiologic methods, research design, Cohort Studies, Logistic Models, Bias, Case-Control Studies, Odds Ratio, Humans, Computer Simulation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
bronze