Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Pharmacoepidemiology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pharmacoepidemiology and Drug Safety
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Identification of metastatic cancer in claims data

Authors: Beth L, Nordstrom; Joanna L, Whyte; Marilyn, Stolar; Catherine, Mercaldi; Joel D, Kallich;

Identification of metastatic cancer in claims data

Abstract

ABSTRACTPurposeTo develop algorithms to identify metastatic cancer in claims data, using tumor stage from an oncology electronic medical record (EMR) data warehouse as the gold standard.MethodsData from an outpatient oncology EMR database were linked to medical and pharmacy claims data. Patients diagnosed with breast, lung, colorectal, or prostate cancer with a stage recorded in the EMR between 2004 and 2010 and with medical claims available were eligible for the study. Separate algorithms were developed for each tumor type using variables from the claims, including diagnoses, procedures, drugs, and oncologist visits. Candidate variables were reviewed by two oncologists. For each tumor type, the selected variables were entered into a classification and regression tree model to determine the algorithm with the best combination of positive predictive value (PPV), sensitivity, and specificity.ResultsA total of 1385 breast cancer, 1036 lung, 727 colorectal, and 267 prostate cancer patients qualified for the analysis. The algorithms varied by tumor type but typically included International Classification of Diseases‐Ninth Revision codes for secondary neoplasms and use of chemotherapy and other agents typically given for metastatic disease. The final models had PPV ranging from 0.75 to 0.86, specificity 0.75–0.97, and sensitivity 0.60–0.81.ConclusionsWhile most of these algorithms for metastatic cancer had good specificity and acceptable PPV, a tradeoff with sensitivity prevented any model from having good predictive ability on all measures. Results suggest that accurate ascertainment of metastatic status may require access to medical records or other confirmatory data sources. Copyright © 2012 John Wiley & Sons, Ltd.

Related Organizations
Keywords

Adult, Male, Adolescent, Databases, Factual, Antineoplastic Agents, Neoplasms, Second Primary, Middle Aged, Sensitivity and Specificity, Insurance Claim Review, Young Adult, International Classification of Diseases, Electronic Health Records, Humans, Female, Algorithms, Aged, Neoplasm Staging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research