Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aperta - TÜBİTAK Açı...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aperta - TÜBİTAK Açık Arşivi
Other literature type . 2024
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Phytochemical Analysis
Article . 2024 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effective recovery of limonene‐rich concentrate from lemon residues using terpene‐based deep eutectic solvents based on statistical experimental design

Authors: Horuzoglu, Melike Meryem; Satilmis, Sefanur; Kurtulbas, Ebru; Sahin, Selin;

Effective recovery of limonene‐rich concentrate from lemon residues using terpene‐based deep eutectic solvents based on statistical experimental design

Abstract

AbstractIntroductionWaste by‐products of the juice industry appear valuable for the circular economy concept, considering that the peel accounts for almost half of the total fruit weight. Therefore, the recovery of these highly valuable components from relevant biowaste has become a very interesting research topic.ObjectiveThe current study aims to develop an extraction process integrated with hydrophobic deep eutectic solvent (DES) based on statistical experimental design approach.Material and methodsHomogenizer‐assissted extraction (HAE) was used to recover the citrus extract rich in limonene (the main component of the volatile mixture) from lemon peels. Menthol‐based deep eutectic mixtures were accompanied by carboxylic acids (formic, acetic, and propionic acids). Optimization continued on the combination that gave the highest efficiency (in terms of limonene content) among the solvents prepared at different molar ratios (1/1, 1/2, and 2/1). Process parameters were analyzed to optimize the process through central composite design with response surface method (RSM). D‐Limonene yield was quantified with gas chromatography–mass spectrometry (GC‐MS) with solid‐phase microextraction (SPME) technique. The quality of the lemon peel extracts was also evaluated with respect to in vitro bioactivity assays (phenolic content and 2,2‐diphenyl‐1‐picrylhydrazyl [DPPH] free radical scavenging activity).ResultsThe maximum yield (3.80 mg‐limonene per g fresh sample) was achieved by 2 mg solid/30 mL DES, ~53 sec, and ~8500 rpm. Statistically most effective variable was identified as solid mass, followed by second powers of mixing speed and extraction time at p < 0.0001.

Keywords

Citrus, green chemistry, Terpenes, Plant Extracts, sustainability, multivariate optimization, Gas Chromatography-Mass Spectrometry, Antioxidants, solid-phase microextraction, Fruit, Cyclohexenes, Solvents, Limonene, Solid Phase Microextraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green