
doi: 10.1002/pc.20285
AbstractThis study was conducted to investigate the effects of component concentrations and addition order of the components on the final properties of ternary nanocomposites composed of poly(ethylene terephthalate), organoclay, and an ethylene–methyl acrylate–glycidyl methacrylate (E‐MA‐GMA) terpolymer acting as an impact modifier for PET. In this context, first, the optimum amount of the impact modifier was determined by melt compounding binary PET‐terpolymer blends in a corotating twin‐screw extruder. The amount of the impact modifier (5 wt%) resulting in the highest Young's modulus and moderate elongation at break was selected owing to its balanced mechanical properties. Thereafter, by using 5 wt% terpolymer content, the effects of organically modified clay concentration and addition order of the components on the properties of ternary nanocomposites were systematically investigated. Mechanical testing revealed that different addition orders of the materials significantly affected the mechanical properties. Among the investigated addition orders, the best sequence of component addition (PI‐C) was the one in which poly(ethylene terephthalate) was first compounded with E‐MA‐GMA. Later, this mixture was compounded with the organoclay in the subsequent run. In X‐ray diffraction analysis, extensive layer separation associated with delamination of the original clay structure occurred in PI‐C and CI‐P (Clay + Impact Modifier followed by PET) sequences with both 1 and 3 wt% clay contents. X‐ray diffraction patterns showed that at these conditions exfoliated structures resulted as indicated by the disappearance of any peaks due to the diffraction within the consecutive clay layers. POLYM. COMPOS., 28:251–258, 2007. © Society of Plastic Engineers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
