
doi: 10.1002/path.1156
pmid: 12115864
AbstractThe clinical implications of understanding epidermal stem cell biology abound. Thousands of burns victims across the world have benefited from early research into the proliferation of epidermal keratinocytes in vitro. Advances now indicate there are a number of stem cell repositories within the epidermis, two of which, the interfollicular epidermis and the bulge region of the hair follicle, may supply each other when damaged. This review details the progress made in the identification and characterisation of stem cells within the epidermis and discusses the molecules involved in the epidermal stem cell's choice of fate. Finally, the skin, like bone marrow, could be a readily accessible source of stem cells for therapeutic intervention and evidence of skin stem cell plasticity is highlighted.
Integrin beta1, Stem Cells, Cell Differentiation, Mice, Epidermal Cells, Culture Techniques, Animals, Humans, Cell Lineage, Biomarkers
Integrin beta1, Stem Cells, Cell Differentiation, Mice, Epidermal Cells, Culture Techniques, Animals, Humans, Cell Lineage, Biomarkers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 148 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
