
doi: 10.1002/path.1154
pmid: 12115859
AbstractThe capacity of embryonic stem cells for virtually unlimited self‐renewal and differentiation capacity has opened up the prospect of widespread applications in biomedical research and regenerative medicine. For the latter, the cells provide hope that it will be possible to overcome the problems of donor tissue shortage and also, by making the cells immunocompatible with the recipient, implant rejection. Four years after the first derivation of human pluripotent cell lines from pre‐implantation embryos, a great deal has been learnt about their biology and how differentiation can be encouraged towards particular cell lineages. However, considerable research is needed, not least into means to enrich and purify derivative cell lineages, before clinical trials can be considered. Copyright © 2002 John Wiley & Sons, Ltd.
Tissue Engineering, Stem Cells, Humans, Cell Differentiation, Cell Lineage, Embryo, Mammalian
Tissue Engineering, Stem Cells, Humans, Cell Differentiation, Cell Lineage, Embryo, Mammalian
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 77 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
