Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Optimal Control Appl...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Optimal Control Applications and Methods
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
versions View all 2 versions
addClaim

DC microgrid fault‐tolerant control using state‐dependent Riccati equation techniques

DC microgrid fault-tolerant control using state-dependent Riccati equation techniques
Authors: Yazdan Batmani; Mehran Takhtabnus; Rahmatollah Mirzaei;

DC microgrid fault‐tolerant control using state‐dependent Riccati equation techniques

Abstract

AbstractAn attempt is made to design a fault‐tolerant control system using a nonlinear technique, called the state‐dependent Riccati equation (SDRE) method. The proposed mechanism consists of a master controller, an observer‐based fault detection and isolation system, and three emergency controllers, designed using the SDRE methods. The master controller, as a suboptimal nonlinear regulator, is designed to return DC microgrid (MG) to its desired equilibrium point in normal operation condition. On the other hand, an SDRE observer is designed to establish a unified framework for fault detection and isolation in the DC MG. Indeed, in the case of unexpected fault occurrence, the proposed mechanism can isolate the faulty DG, and then, the emergency controllers are triggered immediately to stabilize the MG. Simulation results indicate that the proposed method is so useful to achieve the control objectives and online protection of the considered MG.

Related Organizations
Keywords

Networked control, Sensitivity (robustness), Nonlinear systems in control theory, state-dependent Riccati equation, DC microgrid, nonlinear control, fault-tolerant control, Control/observation systems governed by ordinary differential equations

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!