Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neurobiol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neurobiology
Article . 2005 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Estrogen alters trkA and p75 neurotrophin receptor expression within sympathetic neurons

Authors: Wohaib, Hasan; H Jesse, Smith; Alison Y, Ting; Peter G, Smith;

Estrogen alters trkA and p75 neurotrophin receptor expression within sympathetic neurons

Abstract

Survival and growth of sympathetic neurons is regulated by nerve growth factor acting through trkA and p75NTR receptors. Sympathetic neurons are also affected by gonadal steroid hormones, particularly estrogen. To determine if estrogen may influence sympathetic neurons via altered neurotrophin receptor expression, we investigated effects of acute or chronic estrogen administration on levels of trkA and p75NTR proteins, numbers of immunoreactive neurons, and numbers of neurons expressing trkA, p75NTR, and estrogen receptor-alpha transcripts. Superior cervical ganglia from ovariectomized or estradiol-treated rats were processed for in situ hybridization or immunohistochemistry, and percentages of stained neurons quantitated or processed for Western blot analysis. In ovariectomized rats, approximately 50% of sympathetic neurons expressed trkA mRNA and protein. Acute estrogen administration did not affect trkA transcript expression, but reduced trkA protein significantly. Chronic treatment did not alter neuronal trkA expression. Approximately 70% of sympathetic neurons in ovariectomized rats expressed p75NTR transcripts and about 50% showed p75NTR immunoreactivity. Acute estrogen did not affect p75NTR expression. However, chronic estrogen reduced p75NTR mRNA and protein expression significantly. Fifty to sixty percent of sympathetic neurons in ovariectomized rats displayed estrogen receptor-alpha mRNA. After acute estrogen administration, estrogen receptor-alpha transcript expression increased by 35%, although this was not maintained chronically. These findings indicate that estrogen can influence sympathetic neuronal neurotrophin receptor expression as well as estrogen receptor-alpha. Reduced trkA expression after acute estrogen may transiently predispose neurons to degenerative events, while diminished p75NTR expression by chronic estrogen administration may exert long-term effects on survival or axonal outgrowth in sympathetic neurons.

Related Organizations
Keywords

Sympathetic Nervous System, Estradiol, Ovariectomy, Blotting, Western, Estrogen Receptor alpha, Gene Expression, Receptor, Nerve Growth Factor, Rats, Rats, Sprague-Dawley, Animals, Female, RNA, Messenger, Receptor, trkA

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!