Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Numerical and Analytical Methods in Geomechanics
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gassmann equations and the constitutive relations for multiple‐porosity and multiple‐permeability poroelasticity with applications to oil and gas shale

Authors: Amin Mehrabian; Younane N. Abousleiman;

Gassmann equations and the constitutive relations for multiple‐porosity and multiple‐permeability poroelasticity with applications to oil and gas shale

Abstract

SummaryMicromechanical characterization of multiple‐porosity and multiple‐permeability fluid‐saturated porous materials from the properties of their single‐porosity constituents is, to date, an open problem in our poromechanics society. This paper offers an in‐depth view to this problem by considering the thermodynamic potential energy density, consistent with Biot's original definition, together with the general thought experiment, which allows for independent control of the sample's confining stress and distinct fluid pore pressures within its individual porosity networks. The complete set of well‐known poroelastic constants, namely, Biot–Willis effective stress, Skempton's pore pressure, and specific storage coefficients, as well as drained, undrained, and Biot moduli for a fluid‐saturated porous material, is herein identified with the reformulated theory. In particular, Gassmann relation for the bulk compressibility of the fluid‐saturated material is accordingly upgraded to the case being addressed in this study.The practical implications of the theory are showcased through a class of analytical solutions to the time‐dependent poroelastic responses of shale to compression, when the hierarchical structure of its porous networks are accounted for at different levels of complexity and inter‐porosity exchange effects. For this purpose, the laboratory setup of a quasi‐2D compression test is considered, in which disk‐shaped fluid‐saturated samples of shale are allowed to drain laterally, while being sealed and confined from the top and bottom. A general closed‐form solution to this problem is derived in the Laplace space, and the inverse numerical results for the cases of single‐porosity, double‐porosity, triple‐porosity, and quadruple‐porosity shale are discussed in the time domain. Copyright © 2015 John Wiley & Sons, Ltd.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!