Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Muscle & Nervearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Muscle & Nerve
Article . 1992 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Muscle & Nerve
Article . 1992
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dantrolene sodium and fatigue of long duration

Authors: Steven L. Lehman; R. S. Moussavi; Robert G. Miller;

Dantrolene sodium and fatigue of long duration

Abstract

AbstractA long‐lasting imparment of muscular force generation follows fatiguing exercise (fatigue of long duration), the physiological basis of which is not well understood. To investigate the role of reduced calcium release in longlasting fatigue, we examined the effects of dantrolene sodium, which selectively decreases calcium release from the sarcoplasmic reticulum. The drug impaired muscle function in a pattern identical to that of long‐lasting fatigue. The results are consistent with either indeependent effects of dantrolene and exercise at the same site in the excitation–contraction coupling chain, or independent actions at separate serial sites.

Keywords

Adult, Male, Time Factors, Electromyography, Muscles, Middle Aged, Dantrolene, Sarcoplasmic Reticulum, Humans, Calcium, Female, Exercise, Aged, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?