Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Muscle & Nervearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Muscle & Nerve
Article . 1990 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Muscle & Nerve
Article . 1990
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Aberrant reinnervation

Authors: A J, Sumner;

Aberrant reinnervation

Abstract

AbstractAlthough great empasis is placed on providing a satisfactory conduit for regeneration of peripheral axons after nerve repair, the quality of functional restoration is influenced as much by the quality as the quantity of axonal regeneration. Misdirected regeneration is so commonly encountered that motor axons appear to enter and regenerate to muscles in an almost random manner. Thus, when there are several choices, as usually is the case with more proximal nerve or plexus repairs, misdirected reinnervation accounts in many incidences for a poor quality of functional restoration. The regenerative capacities of type I and type II motor axons appear to differ. Proprioceptors and other sensory axons have been shown to reinnervate inappropriate end organs. Consequently, deranged central reflex modulation and disturbed orderly recruitment of motor units according to the size principle also contributes to this problem. Central re‐education or adaptation to misdirected regeneration does not occur to any appreciable extent.

Related Organizations
Keywords

Microsurgery, Electromyography, Peripheral Nerve Injuries, Muscles, Humans, Peripheral Nerves, Muscle Contraction, Nerve Regeneration

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!