
AbstractA major difference between arterial‐spin‐labeling MRI and gold‐standard radiotracer blood flow methods is that the compartment localization of the labeled spins in the arterial‐spin‐labeling image is often ambiguous, which may affect the quantification of cerebral blood flow. In this study, we aim to probe whether the spins are located in the vascular system or tissue by using T2 of the arterial‐spin‐labeling signal as a marker. We combined two recently developed techniques, pseudo‐continuous arterial spin labeling and T2‐Relaxation‐Under‐Spin‐Tagging, to determine the T2 of the labeled spins at multiple postlabeling delay times. Our data suggest that the labeled spins first showed the T2 of arterial blood followed by gradually approaching and stabilizing at the tissue T2. The T2 values did not decrease further toward the venous T2. By fitting the experimental data to a two‐compartment model, we estimated gray matter cerebral blood flow, arterial transit time, and tissue transit time to be 74.0 ± 10.7 mL/100g/min (mean ± SD, N = 10), 938 ± 156 msec, and 1901 ± 181 msec, respectively. The arterial blood volume was calculated to be 1.18 ± 0.21 mL/100 g. A postlabeling delay time of 2 s is sufficient to allow the spins to completely enter the tissue space for gray matter but not for white matter. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.
Adult, Male, Brain, Reproducibility of Results, Cerebral Arteries, Image Enhancement, Sensitivity and Specificity, Cerebrovascular Circulation, Image Interpretation, Computer-Assisted, Humans, Female, Spin Labels, Algorithms, Blood Flow Velocity, Magnetic Resonance Angiography
Adult, Male, Brain, Reproducibility of Results, Cerebral Arteries, Image Enhancement, Sensitivity and Specificity, Cerebrovascular Circulation, Image Interpretation, Computer-Assisted, Humans, Female, Spin Labels, Algorithms, Blood Flow Velocity, Magnetic Resonance Angiography
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 65 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
