Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Magnetic Resonance i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Magnetic Resonance in Medicine
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
MPG.PuRe
Article . 2006
Data sources: MPG.PuRe
versions View all 3 versions
addClaim

Balanced alternating steady‐state elastography

Authors: Bieri, O.; Maderwald , S.; Ladd, M.; Scheffler, K.;

Balanced alternating steady‐state elastography

Abstract

AbstractA conventional balanced steady‐state free precession (b‐SSFP) sequence scheme was modified such that the dynamic equilibrium becomes very sensitive to small cyclic displacements, generating two distinct and alternating steady states. This novel technique is proposed for the visualization of propagating transverse acoustic shear waves, as used in MR elastography (MRE) to determine the mechanical properties of materials or in vivo soft tissue. Experiments with tissue‐like agarose gel phantoms and simulations demonstrate that the novel sequence offers an increase in phase sensitivity by about one order in magnitude compared to standard motion‐encoding methods. In addition, the new method benefits from the very short acquisition times achieved by b‐SSFP protocols. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.

Related Organizations
Keywords

Phantoms, Imaging, Image Interpretation, Computer-Assisted, Humans, Reproducibility of Results, Artifacts, Muscle, Skeletal, Magnetic Resonance Imaging, Sensitivity and Specificity, Elasticity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze