Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Magnetic Resonance i...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Magnetic Resonance in Medicine
Article . 2006 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
MPG.PuRe
Article . 2006
Data sources: MPG.PuRe
versions View all 3 versions
addClaim

Oscillating steady states

Authors: Scheffler, K.; Maderwald , S.; Ladd, M.; Bieri, O.;

Oscillating steady states

Abstract

AbstractThe signal formation and properties of steady‐state free precession (SSFP) in combination with alternating RF pulse phases or alternating spin precession is analyzed. Simulations and experiments demonstrate that the amplitudes of SSFP echo paths are significantly influenced by application of alternating phases either via the exciting RF pulse or via some external mechanism producing alternating spin precession. The influence of alternating phases on echo amplitudes is different for different echo paths. The primary SSFP echo paths F0− and F0+ exhibit a signal reduction whereas higher‐order echoes F−1− and F1+ show a signal increase upon application of oscillating phases. This behavior can be described using a simple perturbation theory applied to the frequency response profile of balanced SSFP combined with a final signal integration over one balanced SSFP band. The high sensitivity of SSFP echo amplitudes to alternating RF pulse phases or precession is exemplarily used to detect and visualize propagating transverse acoustic shear waves. Detection of flow or alternating currents are further possibilities to apply this unique feature of SSFP. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.

Related Organizations
Keywords

Models, Theoretical, Magnetic Resonance Imaging

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
bronze