Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Nutrition ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Nutrition & Food Research
Article . 2011 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

Chemopreventive effects of tea in prostate cancer: Green tea versus black tea

Authors: Susanne M, Henning; Piwen, Wang; David, Heber;

Chemopreventive effects of tea in prostate cancer: Green tea versus black tea

Abstract

AbstractThe polyphenol compositions of green tea (GT) and black tea (BT) are very different due to post‐harvest processing. GT contains higher concentrations of monomeric polyphenols, which affect numerous intracellular signaling pathways involved in prostate cancer (CaP) development. BT polymers, on the other hand, are poorly absorbed and are converted to phenolic acids by the colonic microflora. Therefore, after consumption of GT, higher concentrations of polyphenols are found in the circulation, whereas after BT consumption the phenolic acid levels in the circulation are higher. The majority of in vitro cell culture, in vivo animal, and clinical intervention studies examine the effects of extracts of GT or purified (−)‐epigallocatechin‐3‐gallate (EGCG) on prostate carcinogenesis. These studies provide strong evidence supporting a chemopreventive effect of GT, but results from epidemiological studies of GT consumption are mixed. While the evidence for a chemopreventive effect of BT is much weaker than the body of evidence with regard to GT, there are several animal BT intervention studies demonstrating inhibition of CaP growth. This article will review in detail the available epidemiological and human clinical studies, as well as animal and basic mechanistic studies on GT and BT supporting a chemopreventive role in CaP.

Related Organizations
Keywords

Flavonoids, Male, Tea, Plant Extracts, Polyphenols, Prostatic Neoplasms, Chemoprevention, Intestinal Absorption, Phenols, Species Specificity, Risk Factors, Animals, Anticarcinogenic Agents, Humans, Tissue Distribution, Phytotherapy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research