Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aperta - TÜBİTAK Açı...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aperta - TÜBİTAK Açık Arşivi
Other literature type . 2022
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mathematical Methods in the Applied Sciences
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Clifford algebra multivectors and kernels for melanoma classification

Authors: Mutlu Akar; Nikolay M. Sirakov; Mutlu Mete;

Clifford algebra multivectors and kernels for melanoma classification

Abstract

Melanoma is a deadly skin disease. Availability of digital skin lesion datasets ease the exploration of ample classification studies. Both theoretical and heuristics improvements are achieved thanks to these new datasets. Being one of many high‐level feature‐driven classification methods, support vector machines (SVMs) are widely used in the literature as melanoma classifiers. Almost all of these studies are using a limited set of predefined kernels. In this study, we propose a newly developed Clifford kernel for the classification of dermoscopic skin lesions. We develop Clifford‐based linear, polynomial, and exponential kernels in the Clifford algebra (CA) Cℓ5, 0 0‐, 2‐, and 4‐vector subspaces. CAs are noncommutative but associative and distributive over addition. We showed that the newly developed Clifford kernels are embedded into SVM classifiers to successfully identify malignant skin lesions in a binary classification settings. Clifford kernel results are compared with mostly used gaussian and polynomial kernels with real‐valued SVM classifiers. Accuracy of all classifiers are assessed with cross‐validation using imbalanced and balanced datasets of 112, 162, and 192 lesions. SVM kernels in comparison are parameterized to scan wide range of possibilities. We show that Clifford‐based polynomial kernels outperforms in all, balanced and imbalanced, datasets having average accuracy of 83%. The consistence of high accuracies obtained with Clifford polynomial kernel shows that skin lesion features are logically designed and Clifford‐based SVM is able to model class separations in the feature space.

Keywords

classification, multivector, Learning and adaptive systems in artificial intelligence, Applications of Clifford algebras to physics, etc., skin lesions, Pathology, pathophysiology, Clifford support vector machines, Clifford algebras

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green