Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Genetics &...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Genetics & Genomic Medicine
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Genetics & Genomic Medicine
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

Role of NPR2 mutation in idiopathic short stature: Identification of two novel mutations

Authors: Il Tae Hwang; Yusuke Mizuno; Naoko Amano; Hye Jin Lee; Young Suk Shim; Hyo‐Kyoung Nam; Young‐Jun Rhie; +4 Authors

Role of NPR2 mutation in idiopathic short stature: Identification of two novel mutations

Abstract

AbstractBackgroundC‐type natriuretic peptide (CNP, NPPC) and its receptor, natriuretic peptide receptor‐B (NPR‐B, NPR2), are critical for endochondral ossification. A monoallelic NPR2 mutation has been suggested to mildly impair long bone growth. This study was performed to identify the NPR2 mutations in Korean patients with idiopathic short stature (ISS).MethodsOne hundred and sixteen subjects with nonsyndromic ISS were enrolled in this study, and the NPPC and NPR2 were sequenced. In silico prediction and in vitro functional analysis, using a cell‐based assay, were performed to confirm their protein derangement.ResultsMean age at diagnosis of ISS was 8.0 years, and the height z‐score was −2.65. Three pathogenic variants (R921Q, R495C, and Y598N) and one benign variant (R787W) of the NPR2 were identified, while no novel sequence variant of the NPPC was found in all subjects. Two novel pathogenic mutants (R495C and Y598N) were predicted as highly pathogenic by several computational methods. In vitro study involving stimulation with CNP, R495C‐, and Y598N‐transfected cells showed decreased cGMP production compared to wild type‐transfected cells.ConclusionHeterozygous NPR2 mutations were found in 2.6% of ISS Korean subjects. This prevalence and the dominant‐negative effect of mutant NPR‐B on growth signals imply that it is one of genetic causes of ISS.

Keywords

Male, Mutation, Missense, Original Articles, QH426-470, natriuretic peptide receptor‐B, idiopathic short stature, COS Cells, Chlorocebus aethiops, Genetics, Animals, Humans, Female, Child, Dwarfism, Pituitary, NPR2, Receptors, Atrial Natriuretic Factor

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Top 10%
Top 10%
Green
gold