Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Movement Disordersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Movement Disorders
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Role of the somatosensory system in primary dystonia

Authors: TINAZZI, Michele; ROSSO T.; FIASCHI, Antonio;

Role of the somatosensory system in primary dystonia

Abstract

AbstractThe pathophysiology of dystonia is still not fully understood, but it is widely held that a dysfunction of the corticostriatal–thalamocortical motor circuits plays a major role in the pathophysiology of this syndrome. Although the most dramatic symptoms in dystonia seem to be motor in nature, marked somatosensory perceptual deficits are also present in this disease. In addition, several lines of evidence, including neurophysiological, neuroimaging and experimental findings, suggest that both motor and somatosensory functions may be defective in dystonia. Consequently, abnormal processing of the somatosensory input in the central nervous system may lead to inefficient sensorimotor integration, thus contributing substantially to the generation of dystonic movements. Whether somatosensory abnormalities are capable of triggering dystonia is an issue warranting further study. Although it seems unlikely that abnormal somatosensory input is the only drive to dystonia, it might be more correlated to the development of focal hand than generalized dystonia because local somesthetic factors are more selectively involved in the former than in the latter where, instead it seems to be a widespread deficit in processing sensory stimuli of different modality. Because basal ganglia and motor areas are heavily connected not only with somatosensory areas, but also with visual and acoustic areas, it is possible that abnormalities of other sensory modalities, such as visual and acoustic, may also be implicated in the pathophysiology of more severe forms of primary dystonia. Further studies have to be addressed to the assessment of the role of sensory modalities and their interaction on the pathophysiology of different forms of primary dystonia. © 2003 Movement Disorder Society

Country
Italy
Related Organizations
Keywords

Afferent Pathways, Electromyography, Motor Cortex, Magnetoencephalography, Somatosensory Cortex, Hand, Magnetic Resonance Imaging, Basal Ganglia, Electric Stimulation, Feedback, Electrophysiology, Dystonia, Evoked Potentials, Somatosensory, Humans, Brain Stem, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    167
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
167
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?