
doi: 10.1002/mc.70004
ABSTRACTN6‐methyladenosine (m6A) modification plays a pivotal role in cancer progression, yet its regulatory mechanisms in bladder cancer (BCa) remain poorly understood. This study investigates the functions of two key m6A regulators—α‐ketoglutarate‐dependent dioxygenase alkB homolog 5 (ALKBH5) and KIAA1429—in modulating BCa cell behavior. Expression levels of ALKBH5, KIAA1429, and Sonic Hedgehog (SHH) were examined in BCa tissues and adjacent normal tissues. Functional assays, including methylated RNA immunoprecipitation‐quantitative PCR (MeRIP‐qPCR), RNA immunoprecipitation (RIP), and RNA stability assessments, were performed in J82 BCa cells to explore the underlying mechanisms. Results revealed that KIAA1429 was significantly upregulated in BCa and promoted cell proliferation, migration, and invasion by enhancing m6A modification and stabilizing SHH mRNA, leading to activation of the Hedgehog signaling pathway. In contrast, ALKBH5, which was downregulated in BCa, acted as an m6A demethylase that destabilized SHH mRNA and attenuated Hedgehog pathway activity, thereby counteracting the oncogenic effects of KIAA1429. Moreover, overexpression of SHH reversed the inhibitory effects induced by KIAA1429 knockdown, confirming its role as a downstream effector. In conclusion, ALKBH5 and KIAA1429 exert opposing regulatory effects on BCa progression via m6A‐mediated modulation of SHH expression and Hedgehog signaling. These findings highlight SHH mRNA methylation as a central mechanism in BCa malignancy and identify ALKBH5 and KIAA1429 as potential therapeutic targets.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
