
pmid: 35092101
AbstractHydrogels belong to the most promising materials in polymer and materials science at the moment. As they feature soft and tissue‐like character as well as high water‐content, a broad range of applications are addressed with hydrogels, e.g., tissue engineering and wound dressings but also soft robotics, drug delivery, actuators, and catalysis. Ways to tailor hydrogel properties are crosslinking mechanisms, hydrogel shape, and reinforcement, but new features can be introduced by variation of hydrogel composition as well, e.g., via monomer choice, functionalization or compartmentalization. In particular, multicompartment hydrogels drive progress toward complex and highly functional soft materials. In the present review the latest developments in multicompartment hydrogels are highlighted with a focus on three types of compartments; micellar/vesicular, droplets, and multilayers including various subcategories. Furthermore, several morphologies of compartmentalized hydrogels and applications of multicompartment hydrogels will be discussed as well. Finally, an outlook toward future developments of the field will be given. The further development of multicompartment hydrogels is highly relevant for a broad range of applications and will have a significant impact on biomedicine and organic devices.
Drug Delivery Systems, Tissue Engineering, Polymers, Hydrogels, Micelles
Drug Delivery Systems, Tissue Engineering, Polymers, Hydrogels, Micelles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
